PARATHYROID DISEASES
LECTURE PLAN

- Parathyroid hormone secretion regulation
- Hyperparathyroidism
- Hypoparathyroidism
Parathyroid Glands

- Four endocrine glands
- Formed by 3rd/4th pharyngeal pouch
- Located behind thyroid
- Secrete parathyroid hormone (PTH)
- Important for calcium, phosphate homeostasis
Parathyroid Hormone

• Protein hormone, water soluble
• Binds to cell surface receptors in bone and kidney
• Synthesized by chief cells of parathyroid gland
Parathyroid Hormone Effects

• **Net Effects:**
 • $\uparrow [Ca^{2+}]$ plasma
 • $\downarrow [P04^{3-}]$ plasma
 • $\uparrow [P04^{3-}]$ urine

• Some effects due to direct action PTH
• Some due to activation of vitamin D (indirect)
Parathyroid Hormone

• Secreted in response to:
 • $\downarrow [\text{Ca}^{2+}]$ (major stimulus; fastest response)
 • \uparrow plasma $[\text{P}04^{3-}]$
 • $\downarrow 1,25-(\text{OH})_{2} \text{vitamin D}$

• Calcium activates calcium-sensing receptors (CaSRs)
 • \downarrow PTH
Ca SR - calcium-sensing receptor

VDR - vitamin D receptor
Parathyroid Hormone

MAGNESIUM

• **High magnesium**
 - ↓ PTH (same effect as calcium)
 - Magnesium can activate CaSRs

• **Low Mg**
 - ↑ PTH release (same effect as calcium)
 - ↑ GI and renal magnesium along with calcium
Parathyroid Hormone

MAGNESIUM

- Very low Mg \rightarrow inhibits PTH release
 - Some Mg required for normal CaSR function
 - Abnormal function \rightarrow suppression of PTH release

- Hypocalcemia often seen in severe hypomagnesemia
Qt Interval

NORMAL QT

Prolonged Qt: ↓Mg, ↓Ca

Short Qt: ↑Ca
Parathyroid Hormone Effects

Kidney:
- ↑ Ca\(^{2+}\) resorption (DCT)
- ↓ P04\(^{3-}\) resorption (PCT)
- ↑ 1,25-(OH)\(_2\) vitamin D production

GI:
- ↑Ca\(^{2+}\) and P04\(^{3-}\) absorption (via vitamin D)

Bone:
- ↑Ca\(^{2+}\) and P04\(^{3-}\) resorption (direct and via vitamin D)
Parathyroid Hormone

LUMEN (URINE)

PTH

↑PO4-excretion

Interstitium/Blood

Na

PO4-

ATP

K

Proximal Tubule

Proximal Tubule
• **Proximal tubule** converts vitamin D to active form

• Can occur independent of kidney in **sarcoidosis**
 • Leads to **hypercalcemia**

\[\text{PTH} \downarrow + \]

\[25-\text{OH Vitamin D} \xrightarrow{1\alpha \text{-hydroxylase}} 1,25-\text{OH}_2 \text{Vitamin D} \]
Parathyroid Hormone

LUMEN (URINE)

Interstitium/Blood

Distal Tubule

\[\text{Na}^+ \]

\[\text{Cl}^- \]

\[\text{Ca}^{2+} \]

\[\text{Na}^+ \]

\[\text{K}^+ \]

\[\text{ATP} \]

\[\text{PTH} \]

\[\uparrow \text{Ca Resorption} \]
Parathyroid hormone effects

- ↓Ca²⁺
- ↑seric Ca²⁺

↑ osteoblasts activity (PTHr)
↑ number of osteoclasts
↑ release of calcium and phosphate

↑ Ca²⁺ reabsorption
↑ phosphate secretion
↑ 1,25(OH)₂D production

↑ Ca²⁺ and phosphate absorption (vitamin D)
Parathyroid Hormone

- Multiple effects on bone
- Stimulates bone *resorption and formation*
- Dominant effect varies with dosage/timing of administration of PTH to bone
Parathyroid Hormone

• Continuous administration of PTH
 • Bone resorption \rightarrow ↑ serum calcium
 • Important physiologically

• Low dose once daily bolus administration
 • Increased bone mass (bone formation)
 • Teriparatide used to treat osteoporosis
Parathyroid Hormone

Osteoblasts
- Bone forming cells
- Contain PTH receptors
- Can ↑ bone mass in response to PTH

Osteoclasts
- Bone resorbing cells
- No PTH receptors
- Activated indirectly by osteoblasts
Parathyroid Hormone

• **M-CSF**
 - Macrophage colony stimulating factor
 - Secreted by osteoblasts

• **RANK-L**
 - Receptor activating nuclear factor kβ ligand
 - Expressed on surface of osteoblasts

• Both produced by osteoblasts → activate osteoclasts
Types of Bone

- **Cortical bone**
 - Hard, outer layer of bone
 - ↓ in response to continuous PTH

- **Trabecular bone**
 - Spongy, inner layer of bone
 - ↑ in response to intermittent, low dose PTH
PTHRP
PARATHYROID HORMONE-RELATED PROTEIN

• Produced in many tissues

• Numerous normal effects

• Synthesized in large amounts by some tumors
 • Renal cell carcinoma
 • Squamous cell lung cancer

• Leads to hypercalcemia in malignancy
PARATHYROID DISEASES
HYPERPARATHYROIDISM
Hyperparathyroidism

- Primary (overactive glands)
- Secondary (hypocalcemia)
- Tertiary (seen in renal failure)
Primary Hyperparathyroidism

• Inappropriate secretion of PTH

• Not due to low calcium

• Commonly caused by parathyroid adenoma
Primary Hyperparathyroidism

Cauze:

- one or more adenomas
 (75-80% cases)
- hyperplasia of the parathyroid glands
 (20%)
- Parathyroid carcinoma
 (less 1%)

The etiology of hyperplasia of the 4 parathyroid glands is multifactorial. It can be associated with familial hereditary syndromes (5-10%), such as multiple endocrine neoplasia (MEN), type 1 (90%) and 2a (30%) or 2b (4%).
Primary Hyperparathyroidism

- Causes **hypercalcemia**
 - ↑ renal reabsorption of Ca
 - ↑ vitamin D activation
 - ↑ bone resorption (loss of cortical bone)

- Phosphaturia

\[\uparrow \text{PTH} \quad \uparrow \text{Ca} \]
Primary Hyperparathyroidism

- Urinary calcium usually **high or normal**

- \uparrow PTH \rightarrow \uparrow Ca urinary reabsorption \rightarrow \uparrow serum Ca

- \uparrow serum Ca \rightarrow \uparrow urinary calcium
Primary Hyperparathyroidism

SYMPTOMS

- “Stones, bones, groans, and psychiatric overtones”
 - Largely historical
 - Modern era, most patients diagnosed early
 - Often asymptomatic; diagnosis by routine blood work
 - Recurrent kidney stones is common presentation
 - Other signs/symptoms more often seen malignancy
Primary Hyperparathyroidism

SYMPTOMS

• Stones (kidney)
 • High Ca in urine can cause stones

• Dehydration
 • Calcium blunts effects of ADH (nephrogenic DI)
 • Polyuria and polydipsia
 • Can lead to renal failure
Primary Hyperparathyroidism

SYMPTOMS

• Bones (bone pain)
 • Adverse effects on bones of long-standing high PTH

• Groans (abdominal pain)
 • Constipation, anorexia, nausea
 • Increased stomach acid production (unclear mechanism)
 • Recurrent peptic ulcers

• Psychiatric overtones
 • Anxiety, altered mental status
CLASIC CLINICAL PRESENTATION

<table>
<thead>
<tr>
<th>Bone involvement</th>
<th>Hipercalcemia</th>
<th>Hipercalciuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteopenia</td>
<td>Peptic ulcers</td>
<td>Urolithiasys</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>Pancreatitis</td>
<td>Nephrocalcinosis</td>
</tr>
<tr>
<td>Fractures, bone deformities</td>
<td>Constipations, nausea, vomiting, loss of appetite</td>
<td>Nephrogenic Diabetes insipidus</td>
</tr>
<tr>
<td>Osteitis fibrosa cystica, brown tumors</td>
<td>Polydipsia, polyuria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Renal failure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CV: hypertension, arithmia, ventricular hypertrofia, calcifications (vascular, ventricular)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weakness, fatigue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neuropsychiatric disorders</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parathyroid crysis</td>
<td></td>
</tr>
</tbody>
</table>
Osteitis Fibrosa Cystica

• Classic bone disease of hyperparathyroidism

• Clinical features:

 • Bone pain and fractures
Osteitis Fibrosa Cystica

• **Subperiosteal** bone resorption
 • Commonly seen in bones of fingers
 • Irregular or indented edges to bones

• **Brown tumors** (osteoclastoma)
 • Collections of giant osteoclasts in bone
 • Mixed with stromal cells and matrix proteins
 • Appear as black spaces in bone on x ray
Osteitis Fibrosa Cystica
Primary hyperparathyroidism
Bone destruction
PARATHYROID CRISIS

Rare

Serum Calcium > 15 mg/dl

Marked signs of hypercalcemia:

• dehydration (hypercalciuria)
• CNS disorders (confusion, nausea, vomiting)
• Constipation, paralytic ileus
• bradycardia (ECG - QT shortening)
DIAGNOSIS OF PRIMARY HYPERPARATHYROIDISM

The diagnosis is established by evaluating the parameters: Ca and PTH.

Primary hyperparathyroidism is associated with hypercalcemia and elevated PTH levels.
DIAGNOSIS OF HYPERPARATHYROIDISM
ADDITIONAL EVALUATIONS FOR THE TACTICAL DECISION

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone densitometry (DXA)</td>
<td>• Lombar region</td>
</tr>
<tr>
<td></td>
<td>• Hip (total or femoral neck)</td>
</tr>
<tr>
<td></td>
<td>• radius (distal 1/3 site)</td>
</tr>
<tr>
<td>USG</td>
<td>renal</td>
</tr>
<tr>
<td>Rx deformed or painful parts of the skeleton</td>
<td></td>
</tr>
<tr>
<td>Vertebral Fracture Assessment (VFA)</td>
<td>Diagnosis of compression vertebral fractures in asymptomatic patients without osteoporosis on DEXA scan</td>
</tr>
<tr>
<td>(VFA) by DXA or x-ray</td>
<td>(assessment of risk of vertebral fracture)</td>
</tr>
<tr>
<td>Genetic disorders?</td>
<td></td>
</tr>
</tbody>
</table>
Patients with asymptomatic HPTP may have low BMD, especially in predominantly cortical areas (radius) compared to trabecular areas (vertebrae).
Primary Hyperparathyroidism

TREATMENT

• Parathyroidectomy
 • Removal of gland with adenoma
 • Pre-op nuclear imaging often done to identify location

• Risks of recurrent laryngeal nerve damage
 • May result in hoarseness

• Post-op hypocalcemia
 • Remaining parathyroid glands may be suppressed
 • Numbness or tingling in fingertips, toes, hands
 • If severe: twitching or cramping of muscles
PRIMARY HYPERPARATHYROIDISM
INDICATIONS FOR SURGERY

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Recommended intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Calcium</td>
<td>> 1.0 mg/dl (0.25 mmol/L) above normal</td>
</tr>
</tbody>
</table>
| Skeletal | **A. Bone Mineral Density** on DXA
 | **T score** < -2.5 SD in lombar vertebrae, hip or radius (distal 1/3) or the presence of a **fragility fracture**
 | **Vertebral fracture** on X-ray, CT, MRI |
| Renal | **A. Creatinine clearance** < 60 ml/min
 | **B. Urinary calcium 24h** > 400 mg/d (>10 mmol/d) and elevated risk of stone formation
 | **C. Presence of nephrolithiasis or nephrocalcinosis** X-ray, USG, CT |
| Age | < 50 years old |

Location imaging is not used to diagnose HPTP or to determine treatment tactics.

It is performed after the decision to perform surgery.
HPTP LOCATION IMAGING

<table>
<thead>
<tr>
<th>Tipul</th>
<th>Comentarii</th>
<th>Sensibilitate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrasound</td>
<td>Usually - adenoma of the parathyroid with hypoechoic characteristic, posterior to the thyroid tissue with peripheral vascularization. USG provides additional information regarding the thyroid gland</td>
<td>up to 80%</td>
</tr>
<tr>
<td>Technetium-99m sestamibi scinti</td>
<td>Uniplane image</td>
<td>60-90%</td>
</tr>
<tr>
<td>SPECT — Sestamibi-single photon emission computed tomography</td>
<td>3D Dimensional Image - the presence of multiple dimensions shows the location of the parathyroid glands relative to the thyroid gland</td>
<td>~ 90%</td>
</tr>
<tr>
<td>SPECT-CT</td>
<td>SPECT and CT fusion. It offers the possibility to distinguish the parathyroid glands from the adjacent tissues.</td>
<td></td>
</tr>
<tr>
<td>Computed tomography (CT)</td>
<td>Low sensitivity</td>
<td></td>
</tr>
<tr>
<td>Magnetic resonance imaging (MRI)</td>
<td>For reinterventions - helps to locate the parathyroid tissue</td>
<td>40-85%</td>
</tr>
</tbody>
</table>

* Sensitivity for detecting solitary adenoma. No imaging technique accurately predicts multiglandular disease
99mTc-sestamibi is taken up by the mitochondria in thyroid and parathyroid tissue; however, the radiotracer is retained by the mitochondria-rich oxyphil cells in parathyroid glands longer than in thyroid tissue. Radionuclid usually washes out of normal thyroid tissue in under an hour. It persists in abnormal parathyroid tissue.
PARATHYROID SCINTISCAN
(99MTC+MIBI AND 99MTC)
PARATHYROID SCINTISCAN
(99MTC+MIBI AND 99MTC)

Ectopic parathyroid in the chest
SPECT/CT
SURGICAL TECHNIQUES

1) Minimal invasive – solitary adenoma

2) Bilateral cervical exploration - is the ideal operation for most patients with multigland disease, including those with genetic disease. In patients with hereditary PHPT all parathyroid cells are mutated. The extent of resection is "not too much and not too little". Recommended operation for MEN 1 patients with is a subtotal PTX removing $3^{1/2}$ glands and leaving a viable 30 to 50 mg remnant from the most normal- appearing gland.
SUCCESSFUL PARATHYROIDECEMY

1. Normalization of biochemical parameters
2. Reduction of nephrolithiasis
3. BMD improvement, bone reconstruction
EVOLUTION OF BMD POST-OP AND ON TREATMENT WITH ALENDRONATE

According to: Szymczak J, Bohdanowicz-Pawlak A. HMR 2013

LS-lumbar spine, FN-femoral neck, F-D- forearm 1/3 distal, F-UD-forearm ultradistal, total -total body
IMAGISTIC FOLLOW-UP
before PTX

6 months after PTX
HPTP DRUG THERAPY

Pharmacotherapy can be used in asymptomatic or mild patients or in patients with failed parathyroidectomy, or who have contraindications for intervention.
MEDICATION

<table>
<thead>
<tr>
<th>Drug</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcimimetics (cinacalcet)</td>
<td>• Decreases calcemia and calciuria</td>
</tr>
<tr>
<td></td>
<td>• Reduce, but do not normalize PTH</td>
</tr>
<tr>
<td></td>
<td>• It does not affect BMD</td>
</tr>
<tr>
<td>Bisphosphonates (alendronate)</td>
<td>• Improves BMD</td>
</tr>
<tr>
<td></td>
<td>• Does not change serum Ca</td>
</tr>
<tr>
<td>Denosumab (?)</td>
<td>• RANKL antagonist – decrease bone resorption</td>
</tr>
</tbody>
</table>
TREATMENT OF SEVERE HYPERCALCEMIA (PARATHYROID CRISIS)

- Hydration with saline solution
- Furosemide (after hydration)
- Bisphosphonates iv. (pamidronate, zoledronic acid)
- Glucocorticoids (prednisone 10-40 mg / d)
- Calcitonin sc., im.
- Calcimimetics (cinacalcet) - 10-80 mg / d
PRIMARY HYPERPARATHYROIDISM - DIFFERENTIAL DIAGNOSIS

HYPERCALCEMIA ACCORDING TO ETIOLOGY

<table>
<thead>
<tr>
<th>Excess PTH</th>
<th>PTH independent bone resorption</th>
<th>Excess of Vit. D</th>
<th>Excess of alimentary Ca</th>
</tr>
</thead>
</table>
| Hiperparathyroidism:
 - primary
 - secondary
 - Tertiary | PTHrP secreting malignancy | ↑ intake of Vit. D | Milk alkali syndrome (calcium-alkali syndrome - ↑ intake of CaCO₃) |
| Familial hypocalciuric hypercalcemia (FHH) - (inactivating mutation in the calcium sensing receptor gene) | Osteolytic bone metastases | Ectopic 1,25(OH)₂D production (lymphoma, granuloma) | |
| Lithium
 (reduces sensitivity of PTH secretion to inhibition by calcium) | Paget’s disease | | |
| | Immobilisation | | |
| | Hyperthyroidism | | |
2º Hyperparathyroidism

- Occurs in renal failure patients
- Chronically low serum calcium \rightarrow \uparrow PTH
- No symptoms of hypercalcemia
- Results in **renal osteodystrophy**
 - Bone pain (predominant symptom)
 - Fractures (weak bones 2º chronic high PTH levels)
 - If severe, untreated can lead to osteitis fibrosa cystica

\uparrowPTH \downarrowCa
COMMON CAUSES OF SECONDARY HYPERPARATHYROIDISM

<table>
<thead>
<tr>
<th>Cause</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CKD (GFR below 60 ml/min)</td>
<td>Impairment of 1,25 (OH) 2D, hyperphosphatemia</td>
</tr>
<tr>
<td>Decreased calcium intake</td>
<td></td>
</tr>
<tr>
<td>Calcium malabsorption</td>
<td>Vitamin D Deficiency, celiac disease, chronic pancreatitis, postgastrectomy syndrome, bariatric surgery</td>
</tr>
<tr>
<td>Renal calcium loss</td>
<td>Renal hypercalciuria</td>
</tr>
<tr>
<td>Drugs</td>
<td>Bisphosphonates, anticonvulsants, furosemide, phosphorus</td>
</tr>
</tbody>
</table>
Hyperparathyroidism

Treatment

• Maintaining the serum calcium and phosphorus levels within the normal range along with control of PTH and vitamin D levels is the key in management of secondary hyperparathyroidism.

• Parathyroidectomy is a surgical modality available if medical therapy is unsuccessful or refractory.

• Surgical techniques include subtotal parathyroidectomy and total parathyroidectomy with or without autotransplantation.
Calcium-Phosphate in Renal Failure

Sick Kidneys

↑Phosphate ↓1,25-OH₂ Vitamin D

↓Ca from plasma ↓Ca from gut

Hypocalcemia

↑PTH
3° Hyperparathyroidism

- Consequence of chronic renal failure
- Chronically low calcium \Rightarrow chronically \uparrow PTH
- Parathyroid becomes autonomous
- VERY high PTH levels
- Calcium may become elevated
- Often requires parathyroidectomy
3o Hyperparathyroidism

Management

- Vitamin D
- P binders
- Calcimimetics

- Surgery - subtotal parathyroidectomy and total parathyroidectomy
HYPOPARATHYROIDISM
Hypoparathyroidism

- Inappropriately low PTH secretion
- Not due to hypercalcemia
- Causes hypocalcemia

\[\downarrow PTH \quad \downarrow Ca \]
CAUSES OF INSUFFICIENT PTH SECRETION
OR INSUFFICIENT PTH ACTIVITY

1. Acquired deficiency of parathyroid hormone secretion (> 99% of all cases):

 - Surgical removal of the parathyroid glands (usually unintentional)
 - Neck radiotherapy, parathyroid infiltration
 - Hypomagnesemia
 - Calcimimetics
 - Autoimmune:
 - Isolated hypoparathyroidism
 - APS 1 (autoimmune polyendocrine syndrome caused by mutations in the autoimmune regulator gene (AIRE)) → anti-CaSR antibodies
 - Neonatal hypocalcemia

2. Congenital lack of PTH secretion due to absent, hypoplastic or ectopic parathyroid glands (eg DiGeorge's syndrome), (extremely rare)

3. Resistance to parathyroid hormone (pseudohypoparathyroidism), (extremely rare). Inability of the kidneys and bones to respond to PTH caused by normal parathyroid glands.
SYMPTOMS OF HYPOPARATHYROIDISM

1. Hypocalcemia:
 Tetany, paresthesias, neurological disorders, convulsions

2. Calcium phosphate storage in soft tissues
 (basal ganglia, joint capsules, subcutaneous tissue, vitreous humor, muscles, bones).
Hypocalcemia

SIGNS/SYMPTOMS

• Neuromuscular irritability
 • Nerves: **tingling** of fingers, toes, around mouth
 • Muscles: intermittent **spasms** (tetany)

• Tetany
 • Trousseau's sign: Hand spasm with BP cuff inflation
 • Chvostek's sign: Facial contraction with tapping on nerve

• Seizures
Video 1

https://www.youtube.com/watch?v=kvmwsTU0InQ
Three subtypes of tetany may occur in isolation, but all three may occur simultaneously on the same subject. These are:

- **Tetanic attack**
 Sensory symptoms: paresthesias of the lips, tongue, fingers and toes
 Carpopedal spasm
 Facial muscle spasm
 Generalized muscle pain and spasm

- **Latent tetanus** that requires stimuli (Chvostek and Trousseau signs are easy to make to highlight latent tetany).

- **Tetanic equivalents**
 Involvement of the autonomic nervous system may be present as: diplopia, blepharospasm, laryngospasm, bronchial spasm, cardia and sphincter of the bladder. Similarly, blood vessels can be affected by causing migraines, angina pectoris, abdominal angina or Raynaud's syndrome.
Patients who gradually develop hypoparathyroidism may associate:

- Calcification of the basal ganglia (Fahr's syndrome) with symptoms of impaired motor and speech function, seizures, headache, dementia and visual disturbances
- Cataract (mineral deposits)
- Dry, thick skin, rough, brittle hair, brittle nails
- Defects in tooth enamel

SYMPTOMS OF HYPOPARATHYROIDISM
HYPOPARATHYROIDISM DIAGNOSIS

1. Testing:
 - ↓ calcium
 - ↑ P
 - ↓ PTH (normal or elevated in pseudohypoparathyroidism)
 - ↔ magnesium
 - ↔ creatinine
 - ↓ 1,25(OH)₂D

2. Low urinary calcium excretion in 24 hours

3. Imagistics if necessary:
 - X-ray, CT – calcifications in the basal ganglia of the brain and other soft tissues
 - USG renal
 - Ophtalmologist (cataract) and neurologist

4. ECG: QT interval prolonged
Hypoparathyroidism - Differential Diagnosis

Other Sources of Hypocalcemia

<table>
<thead>
<tr>
<th>Hypoparathyroidism</th>
<th>Vitamin D Deficit</th>
<th>Low Intake of Ca(^2)</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTH ↓, N</td>
<td>PTH ↑</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Thyroidectomy, neck surgery | Low Calcitriol:
 - ↓ Vitamin D intake.
 - Inadequate sun exposure
 - Malabsorption syndrome | | Osteoblastic bone metastases |
| I 131 therapy for DTG or thyroid cancer | ↓ conversion 25OHD to 1,25(OH)\(_2\)D
 - Renal insufficiency
 - hyperphosphataemia
 - Vitamin D rickets, type 1 | | Pancreatitis |
| Autoimmune hyperparathyroidism | | | Hungry Bones Syndrome |
| Parathyroid infiltration | Calcitriol resistance
 - Vitamin D resistant rickets | | Hyperphosphatemia |
| Hypomagnesemia | | | Multiple transfusions |
| Congenital /genetic | | | Acute respiratory alkalosis |
| PTH resistance (pseudo hypoparathyroidism) PTH ↑ | ↑ inactivation of vit. D (e.g. carbamazepine, phenytoin) | | |
PURPOSE OF HYPOPARATHYROIDISM TREATMENT

• Maintaining the Ca level in the lower limit of the norm so that the patient does not show clinical picture

• Reduction of serum phosphorus to the upper limit of the norm to prevent tissue calcification

• Calciuria - within normal limits to prevent nephrocalcinosis
TREATMENT OF HYPOPARATHYROIDISM

- Diet rich in Ca and poor in P
- Calcium per os daily
- Vitamin D

- Supplemented with Magnesium as needed
- Recombinant PTH - an adjunct to Ca and vitamin D – carefully, can cause osteosarcoma

The tetanus crisis will be treated with Calcium i / v Calcium gluconate - 10 ml of 10% solution in 10 min, if necessary continue with 20-30 ml of 10% calcium gluconate in 5% glucose.
Calcium and PTH

• 1st look at calcium: Low/High
• Next, look at PTH: Low/High
• Same direction = parathyroid problem
 • Both ↑: Hyperparathyroidism
 • Both ↓: Hypoparathyroidism
• Opposite direction
 • Normal response to calcium problem
 • Renal failure (low serum calcium – 2o hyperparathyroidism)
 • Renal losses (pseudohypoparathyroidism)